NIOS/Acad./2021/311/32/E

National Institute of Open Schooling (NIOS) Senior Secondary Course Lesson – 32: Differential Equations Worksheet -32

- 1. Write any three differential equations and identify its degree and order.
- **2.** Find the differential equation of all circles which pass through the origin and whose centres are on the x-axis.
- **3.** Distinguish between Homogeneous differential equations and linear differential equations with examples.
- 4. Form the differential equation of the family of straight lines y = mx, where m is arbitrary constant.
- 5. Determine the order and degree of following differential equations:

(a)
$$6x\left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} + 6y = \log x$$

(b)
$$x^3\left(\frac{d^2y}{dx^2}\right) + x\left(\frac{dy}{dx}\right)^5 = 7$$

(c)
$$(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{1}{x^2 + 1}$$

- **6.** Solve the following differential equations
 - (a) $(x^2 + xy)dy = (x^2 + y^2)dx$ (b) $x\frac{dy}{dx} + y = x\log x$

- 7. Obtain the differential equation of the family of curves $(x-h)^2 + (y-K)^2 = r^2$, where h, K are arbitrary constant.
- 8. Show that the differential equation $(x y)\frac{dy}{dx} = x + 2y$ is homogeneous and solve the equation.
- 9. Find the particular solution of the following differential equation:

(a)
$$(x-y)\frac{dy}{dx} = (x+3y)$$
, given that $y = 0$, when $x = 1$
(b) $dy = \cos x (2-y-\cos ecx) dx$, given that $y = 0$, when $x = \frac{\pi}{2}$

10. Verify that
$$xy = 100y + c$$
 is a solution of differential equation $(xy-1)\frac{dy}{dx} + y^2 = 0$