National Institute of Open Schooling (NIOS)
 Senior Secondary Course
 Lesson - 32: Differential Equations Worksheet - 32

1. Write any three differential equations and identify its degree and order.
2. Find the differential equation of all circles which pass through the origin and whose centres are on the x -axis.
3. Distinguish between Homogeneous differential equations and linear differential equations with examples.
4. Form the differential equation of the family of straight lines $y=m x$, where m is arbitrary constant.
5. Determine the order and degree of following differential equations:
(a) $6 x\left(\frac{d y}{d x}\right)^{2}-\frac{d^{2} y}{d x^{2}}+6 y=\log x$
(b) $x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x\left(\frac{d y}{d x}\right)^{5}=7$
(c) $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{1}{x^{2}+1}$
6. Solve the following differential equations
(a) $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$
(b) $x \frac{d y}{d x}+y=x \log x$
7. Obtain the differential equation of the family of curves $(x-h)^{2}+(y-K)^{2}=r^{2}$, where h, K are arbitrary constant.
8.

Show that the differential equation $(x-y) \frac{d y}{d x}=x+2 y$ is homogeneous and solve the equation.
9. Find the particular solution of the following differential equation:
(a) $\quad(x-y) \frac{d y}{d x}=(x+3 y)$, given that $y=0$, when $x=1$
(b) $\quad d y=\cos x(2-y-\cos e c x) d x$, given that $y=0$, when $x=\frac{\pi}{2}$
10.

Verify that $x y=100 y+c$ is a solution of differential equation $(x y-1) \frac{d y}{d x}+y^{2}=0$

