National Institute of Open Schooling
 Senior Secondary Course : Mathematics
 Lesson 24 : Inverse Trigonometric Functions
 Worksheet - 24

1. Find out the domain and principal values range of all inverse trigonometry functions and observe the relations among them.
2. Prove that: $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$ by using the properties of inverse trigonometric functions.
3. Find out The principal value of following:
i. $\quad \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
ii. $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
iii. $\tan \left(\cot ^{-1} \sqrt{3}\right)$
4. List out properties of inverse trigonometry functions and prove any three properties of inverse trigonometry functions.
5. Prove that: $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{2}=\tan ^{-1} 2$
6. Draw the graph of $\sin ^{-1} \mathrm{x}$ and $\cos ^{-1} \mathrm{x}$ and write your mathematical observations from this two graphs.
7. $2 \tan ^{-1} \frac{1}{4}+2 \tan ^{-1} \frac{2}{9}=\tan ^{-1} \frac{4}{3}$, Prove by using the properties of inverse trigonometric functions.
8. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1}=\Pi$, show that $x^{2}+y^{2}+z^{2}=1-2 x y z$
9. Prove that $\operatorname{Cos}^{-1}\left(2 x^{2}-1\right)=2 \operatorname{Cos}^{-1} x$ by using the properties of inverse trigonometric functions.
10. Write the conditions of trigonometric functions are to be invertible. Cite any thee examples of invertible inverse trigonometric function.
