7

SOLUTIONS

- Solution: A solution is a homogeneous mixture of two or more substances.
- Solvent: It is that component of a solution that has the same physical state as the solution itself.
- Solute: It is the substance that is dissolved in a solvent to form a solution.
- The Concentration of a Solution: Some of the properties of solutions, e.g. the sweetness of a sugar solution or the color of a dye solution, depend on the amount of solute compared to that of the solvent in it.
- This is called the solution concentration.
- Molarity: Molarity is defined as the number of moles of solute dissolved per litre of solution and is usually denoted by M.
- Molality: It is defined as the number of moles of solute dissolved per kilogram of solvent.
- Normality: Normality is another concentration unit. It is defined as the number of gram equivalent weights of solute dissolved per litre of the solution.
- Equivalent weight: The number of parts by weight of a substance (element or compound) that will combine with or displace, directly or indirectly 1.008 parts by weight of hydrogen, 8 parts by weight of oxygen and 35.5 parts by weight of chlorine is known as equivalent weight.
- Mole Fraction: The mole fraction of a component in a solution is the ratio of its number of moles to the total number of moles of all the components in the solution.
- Mass Percentage: Mass percentage is the mass of solute present in 100 g of solution.
- Types of solutions:
(1) Depending upon the dissolution of the solute in the solvent:
(a) supersaturated solution, (b) unsaturated solution and (c) saturated solution
(2) Depending on whether the solvent is water or not: (a) Aqueous solution, (b) Nonaqueous solution
(3) Depends on the amount of solute added to the solvent:
(a) Dilute solution and
(b) Concentrated solution
(4) Based on appearances:
(a) Homogenous and (b) Heterogeneous

Solutions

- A solution may be classified as solid, liquid or a gaseous solution.
- Solubility: It is defined as the amount of solute in a saturated solution per 100 g of a solvent.
- The solubility of a gas in a liquid depends upon:
(a) The nature of the gas and the nature of the liquid,
(b) The temperature of the system, and
(c) The pressure of the gas.
- Henry's Law: The effect of pressure on the solubility of a gas in a liquid is governed by Henry's Law. It states that the solubility of a gas in a liquid at a given temperature in directly proportional to the partial pressure of the gas Mathematically, $\mathrm{P}=\mathrm{K}_{\mathrm{H}} . \mathrm{X}$ where P is the partial pressure of the gas; and X is the mole fraction of the gas in the solution and K_{H} is Henry's Law constant.
- The vapor pressure: Vapor pressure of a liquid is the pressure exerted by its vapor when it is in dynamic equilibrium with its liquid, in a closed container.
- Raoults Law: According to Raoults Law, the vapor pressure of a solution containing a nonvolatile solute is directly proportional to the mole fraction of the solvent $\left(\mathrm{X}_{\mathrm{A}}\right)$. The proportionality constant being the vapor pressure of the pure solvent, i.e.,

$$
P \times X_{A} \text { or } P=P^{\circ} X_{A} .
$$

- Ideal solution: A solution which obeys Raoult's Law at all concentrations and
temperature is known as an ideal solution.
- Characteristics of an ideal solution:
(a) $\Delta_{\text {sol }} V=0$, i.e., there is no change in volume when an ideal solution is formed.
(b) $\Delta_{\text {sol }} \mathrm{H}=0$; i.e., heat is neither evolved nor absorbed during the formation of an ideal solution.
- The solution shows positive deviation from Raoult's Law if its vapour pressure is higher than that predicted by Raoult's Law.
- The solution shows negative deviation if its vapour pressure is lower than that predicted by Raoult's Law.
- Non-ideal solution: Non-ideal solutions are those solutions which do not obey Raoult's law and whose formation is accompanied by changes of heat and volume.
- Colligative properties: These properties of solutions are those properties which depend only upon the number of solute particles in the solution and not on their nature. Such properties are
- (a) Relative lowering in vapour pressure,
- (b) Elevation of boiling point,
- (c) Depression of freezing point and
- (d) Osmotic pressure.
- (a) Relative lowering in vapor pressure: Relative lowering of vapour pressure $=\frac{P_{A}^{o}-P_{A}}{P_{A}^{o}}$

$$
\frac{P_{A}^{o}-P_{A}}{P_{A}^{o}}=X_{B}=\frac{n_{B}}{n_{A}+n_{B}}
$$

- Thus, according to Raoult's Law, the relative lowering of vapor pressure of a solution is equal to the mole fraction of the solute.
- (b) Elevation of boiling point: For a dilute solution, the elevation in boiling point is found to be proportional to the molality of the
solution, i.e., $\Delta T_{b} \propto m$
or
$\Delta T_{b}=K_{b} m$
- where $\Delta \mathrm{Tb}$ is the elevation in boiling point, ' m ' is the molality and Kb is the Molal elevation constant
- (c) Depression of freezing point: The depression in freezing point $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$ is proportional to the molality of the solution.
or

$$
\begin{aligned}
& \Delta T_{f} \propto m \\
& \Delta T_{f}=K_{f} m
\end{aligned}
$$

Where Kf is molal depression constant (freezing point depression constant).

- Osmosis: The spontaneous flow of solvent molecules from a dilute solution into a concentrated solution when the two are separated by a perfect semipermeable membrane is called osmosis.
- Osmotic pressure (π): It is the pressure which must be applied to the solution side (more concentrated solution) to just prevent the passage of pure solvent into it through a semi permeable membrane. Mathematically, $\pi=C R T=n B / V-R T$
Where π is the osmotic pressure of the solution, C is the concentration of solution n_{B} is the number of moles of solute, V is the volume of the solution in liters, R is the gas constant, and T is the temperature on the Kelvin scale.
- In case of association, observed molar mass being more than the normal, the factor ' T has a value less than one. But in case of dissociation, the van't Hoff factor is more than one because the observed molar mass has a less value.
- Isotonic solutions are those solutions which have the same osmotic pressure. Also they have same molar concentration. For isotonic solutions, $\pi_{1}=\pi_{2}$ Also, $\mathrm{C}_{1}=\mathrm{C}_{2}$
- Van't Hoff factor, 'i' is used to express the extent of association or dissociation of solutes in solution. It is die ratio of the normal and observed molar masses of the solute, i. e.,

$$
\begin{aligned}
i & =\frac{\text { Normal molar mass }}{\text { Observed molar mass }} \\
\text { or } i & =\frac{\text { Calculated molar mass }}{\text { Experimental molar mass }}
\end{aligned}
$$

- Mole fraction (X) is a unitless quantity.
- Molality (m) and mole fraction are temperature independent quantities whereas
- Molarity decreases with increase in temperature.
- As the temperature increases Henry's law constant, K_{H} increases so the lower is the solubility of the gas in the liquid.
- $11.7 \% \mathrm{w} / \mathrm{w}$ Helium is added to air used by scuba divers due to its low solubility in the blood.
- Raoult's law becomes a special case of Henryís law in which K_{H} becomes equal to PA^{0}, i.e., vapor pressure of pure solvent.
- Azeotropes having the same composition in liquid and vapor phase and boil at a constant temperature and therefore can't be distilled.
- Azeotropes arise due to very large deviation from Raoult's law. Maximum boiling azeotropes form when solutions exhibit negative deviation from Raoult's law whereas minimum boiling azeotropes form when solutions exhibit positive deviation from Raoult's law.
- Relative lowering in vapour pressure is a colligative property but lowering in vapour pressure is not.
- Van't Hoff factor (i) is the ratio of the observed value of the colligative property in solution to the theoretically calculated value of the colligative property.
- (a) A non-volatile solute undergoes dissociation, then $\mathrm{i}>1$.
- (b) A non-volatile solute undergoes association, then $\mathrm{i}<1$
- Relationship between relative lowering in vapour pressure elevation in b.p.-

$$
\frac{\Delta p}{p_{\mathrm{A}}{ }^{0}}=i \frac{\Delta \mathrm{~T}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{b}}} \mathrm{M}_{\mathrm{A}} \times 1000
$$

- Mole fraction (X): If the number of moles of A and B are nA and $n B$ respectively, the mole fractions of A and B will be:

$$
\begin{aligned}
X_{A}= & \frac{n_{A}}{n_{A}+n_{B}} \text { and } X_{B}=\frac{n_{B}}{n_{A}+n_{B}} \\
& X_{A}+X_{B}=1
\end{aligned}
$$

Molarity $(\mathbf{M})=\frac{\text { Moles of solute }}{\text { Volume of solution in litres }} \mathrm{mol} \mathrm{L}^{-1}$
Molality $(\boldsymbol{m})=\frac{\text { Moles of solute }}{\text { Mass of solvent in kilograms }} \mathrm{mol} \mathrm{kg}^{-1}$

Parts per million (ppm)

- Equivalent weight:

TYPES OF SOLUTION	
Type of Solution	Common Example
Gaseous Solutions	a mixture of oxygen and nitrogen gases.
(i) Gas in gas	chloroform vapours mixed with nitrogen gas.
(ii) Liquid in gas	camphor
(iii) Solid in gas	Liquid Solutions Oxygen gas dissolved in water
(i) Gas in liquid	ethanol dissolved in water
(iii) Liquid in liquid	sucrose dissolved in water
(iii) Solid in liquid	solutions of hydrogen in palladium
Solid Solutions	
(i) Gas in solid	Amalgam of mercury with sodium
(ii) Liquid in solid	copper dissolved in gold
(iii) Solid in solid	

Check Yourself

1. Mole fraction of glycerin $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$ in solution containing 36 g of water and 46 g of glycerin is
(A) 0.46
(B) 0.40
(C) 0.20
(D) 0.36
2. Out of molality (m), molarity (M), formality (F) and mole fraction (x), those which are independent of temperature are
(A) M, m
(B) F, x
$\begin{array}{ll}\text { (C) } m, x & \text { (D) } M, x\end{array}$
3. Which of the following condition is not satisfied by an ideal solution?
(A) $\Delta \mathrm{H}_{\text {mixing }}=0$
(B) $\Delta V_{\text {mixing }}=0$
(C) Raoult's Law is obeyed
(D) Formation of an azeotropic mixture
4. The boiling point of an azeotropic mixture of water and ethanol is less than that of water and ethanol. The mixture shows
(A) No deviation from Raoult's Law.
(B) Positive deviation from Raoult's Law.
(C) Negative deviation from Raoult's Law.
(D) That the solution is unsaturated.
5. Which has the lowest boiling point at 1 atm pressure?
(A) 0.1 M KCl
(B) 0.1 M Urea
(C) $0.1 \mathrm{M} \mathrm{CaCl}_{2}$
(D) $0.1 \mathrm{M} \mathrm{A1Cl}_{3}$

Answers

Check Yourself

Answer: 1(C); 2(C); 3(D); 4(B); 5(B)

Stretch Yourself

1. Adding ethylene glycol to car reduces the freezing point of water. It is used as antifreeze in car radiators during winters.
2. Hint:

$$
\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=\frac{w_{2} \times M_{1}}{M_{2} \times w_{1}}
$$

3. This happens because when an azeotrope is boiled, the vapor has the same proportions of constituents as the unboiled mixture. Because their composition is unchanged by distillation, azeotropes are also called (especially in older texts) constant boiling point mixtures.
4. Given data, $\mathrm{W}_{2}=10.5 \mathrm{~g} \quad \mathrm{~W}_{1}=200 \mathrm{~g} \quad$ Molar mass of $\mathrm{MgBr}, \quad \mathrm{M}_{2}=184 \mathrm{~g}$ K_{f} of water $=1.86$
Hence the change in freezing point is given by the relation, $\Delta \mathrm{T}_{\mathrm{f}}=\left(1000 \times \mathrm{K}_{\mathrm{f}} \times \mathrm{W}_{2}\right) /\left(\mathrm{W}_{1} \times \mathrm{M}_{2}\right)=(1000 \times 1.86 \times 10.5) /(200 \times 184)=>\Delta \mathrm{T}_{\mathrm{f}}=0.53 \mathrm{~K}$ Hence new freezing point, $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0}-\Delta \mathrm{T}_{\mathrm{f}}=273-0.53=272.47 \mathrm{~K}$ Hence the freezing point of the solution will be 272.47 K
5. Metals are malleable and ductile whereas ionic solids are hard and brittle.
