38

Mathematical Reasoning

In reasoning we communicate our ideas or thoughts with the help of sentences in a particular language.
"A sentence is called a mathematically acceptable statement if it is either true or false but not both".
A statement is assumed to be either true or false. A true statement is known as a valid statement and a false statement is known as an invalid statement.

Negation of Statement

The denial of a statement p is called its negation and is written as $\sim p$, and read as 'not p '.
Negation of any statement p is formed by writing "It is not the case that \qquad ." or
"It is false that........"
or
inserting the word "not" in p.
(1) Negation : If p and q are two statements then

$$
\sim(\mathrm{p} \rightarrow \mathrm{q})=\mathrm{p} \wedge \sim \mathrm{q}
$$

(2) Contrapositive : If p and q are two statements, then the contrapositive of the implication

$$
\mathrm{p} \rightarrow \mathrm{q}=(\sim \mathrm{q}) \rightarrow(\sim \mathrm{p})
$$

Compound Statement

If a statement is combination of two or more statements, then it is said to be a compound statement.
And each statement which form a compound statement are known as its sub-statements or component statements.

Basic connectives :

In the compound statement, we have learnt that the words 'or' \& 'and connect two or more statements. These are called connectives. When we use these compound statements, it is necessary to understand the role of these words.
The word "AND" : Any two statements can be connected by the word "and" to form a compound statement.
Rule - (1) The compound statement with word "and" is true if all its component statements are true.
Rule - (2) The compound statement with word "and" is false if any or all of its component statements are false.

Conditional Statement

If p and q are any two statement then the compound statement in the form "If p then $\mathrm{q} "$ is called a conditional statement or an implication.
The statement "If p then q " is denoted by
$\mathrm{p} \rightarrow \mathrm{q}$ or $\mathrm{p} \Rightarrow \mathrm{q}$ (to be read as p implies q)

In the implication "p $\rightarrow \mathrm{q}$ ", p is called the antecedent (or the hypothesis) and q the consequent (or the conclusion)

Tautology and Fallacy

(a) Tautology : This is a statement which always true for all truth values of its components.
b)Fallacy (contradiction) : This is statement which is always false for all truth values of its components.

Algebra of Statement

Statements satisfy many laws some of which are given below -
(1) Idempotent Laws : If p is any statement then
(i) $\mathrm{p} \vee \mathrm{p} \equiv \mathrm{p}$
(ii) $\mathrm{p} \wedge \mathrm{p} \equiv \mathrm{p}$
(2) Associative Laws : If p, q, r are any three statements, then
(i) $p \vee(q \vee r)=(p \vee q) \vee r$
(ii) $p \wedge(q \wedge r)=(p \wedge q) \wedge r$
(3) Commutative Laws: If p, q are any two statements, then
(i) $p \vee q=q \vee p$ (ii) $p \wedge q=q \wedge p$
(4) Distributive Laws : If p, q, r are any three statements, then
(i) $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$
(ii) $p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$
(5) Identity Laws : If p is any statement, t is tautology and c is a contradiction, then
(i) $p \vee t=t$
(ii) $p \wedge t=p$
(iii) $p \vee c=p$
(iv) $p \wedge c=c$
(6) Complement Laws : If t is a tautology, c is a contradiction and p is any statement, then
(i) $p \vee(\sim p)=t$
(ii) $p \wedge(\sim p)=c$
(iii) $\sim \mathrm{t}=\mathrm{c}$
(iv) $\sim \mathrm{c}=\mathrm{t}$
(7) Involution law : If p is any statement, then $\sim(\sim p)=p$
(8) De morgan's law : If p and q are two statements, then
(i) $\sim(p \vee q) \equiv(\sim p) \wedge(\sim q)$
(ii) $\sim(p \wedge q) \equiv(\sim p) \vee(\sim q)$

Stretch Yourself

1- Check the following sentences are statement give reason for your answer .
(a) There is no rain without clouds.
(b) Tajmahal is the most beautiful building of the world.
(c) Every function is a relation.

2- Write the negation of the following statement:
(a) All primes are even
(b) Every integer is greater than Zero.

3- Identify the component statements of the following compound statement
(a) The sky is blue and the grass is green.
(b) All rational number are real and all real number are complex.

4- Check the pair of statements negation of each other :
(a) The number x is a relation number.
(b) The number x is an irrational number.
5- Write the component statements and check the compound statement is true or false.
(a) 59 is divisible by 3 and 5 .
(b) All living things have two eyes and two legs .
6- Write the truth value of the following statements :
(a) New Delhi is in India or $2+2=5$
(b) New Delhi is in America or $2+2=5$

7- Identify the quantifier and write the negation of each of the following statements :
(a) All English teachers are female .
(b) There exist a real number, whose square is not positive.
8- Check whether the following pair of statements are negations of each other: give reasons for your answer
(a) $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$ is true for every real number X and Y .
(b) There exists real number X and Y for which $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$.
9- Write the composite and converse of following statements :
(a) If P is a prime number, then P is odd
(b) If the two lines are parallels, then they do not intersect in the same plane.
10- Prove $\sqrt{ } 19$ is not a rational number.

