21

DETERMINANTS

An expression expressed in equal number of rows and column and put between two vertical lines is named as determinant of that expression

DETERMINANT OF ORDER 2

$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$

$$
\begin{aligned}
& x=\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}} \\
& y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

$\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$
The number $a_{1} b_{2}-a_{2} b_{1}$ determines whether the values of x and y exist or not.

DETERMINANT OF ORDER 3

$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=$
$\mathrm{a}_{1}\left|\begin{array}{ll}\mathrm{b}_{2} & \mathrm{c}_{2} \\ \mathrm{~b}_{3} & \mathrm{c}_{3}\end{array}\right|-\mathrm{b}_{1}\left|\begin{array}{ll}a_{2} & c_{2} \\ \mathrm{a}_{3} & c_{3}\end{array}\right|+\mathrm{c}_{1}\left|\begin{array}{ll}\mathrm{a}_{2} & \mathrm{~b}_{2} \\ \mathrm{a}_{3} & \mathrm{~b}_{3}\end{array}\right|$
$=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+$ $c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$

Minor

The Determinant that is left by cancelling the row and column intersecting at a particular element is called the minor of that element.

If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ then Minor of a_{11} is

$$
\begin{aligned}
M_{11} & =\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \text {, Similarly } \\
M_{12} & =\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
\end{aligned}
$$

Using this concept the value of Determinant can be

$$
\Delta=a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13}
$$

Cofactor

The cofactor of an element a_{ij} is denoted by F_{ij} and is equal to $(-1)^{\mathrm{i}}+\mathrm{j} \mathrm{M}_{\mathrm{ij}}$ where M is a minor of element a_{ij}

$$
\text { if } \Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

then $\quad \mathrm{F}_{11}=(-1)^{1+1} \mathrm{M}_{11}=\mathrm{M}_{11}=$

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \\
& \quad F_{12}=(-1)^{1+2} \mathrm{M}_{12}=
\end{aligned}
$$

$$
-M_{12}=-\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

Property of Determinant

Property -1

The value of Determinant remains unchanged, if the rows and the column are interchanged. This is always denoted by ' and is also called transpose
Property -2
If any two rows (or columns) of a determinant be interchanged, the determinant is unaltered in numerical Value, but is changed in sign only,
Property - 3
If a Determinant has two rows (or columns) identical, then its value is zero.
Property -4
If all the elements of any row (or column) be multiplied by the same number, then the value of Determinant is multiplied by that number.
Property -5
If each element of any row (or column) can be expressed as a sum of two terms, then the determinant can be expressed as the sum of the Determinants
Property -6
The value of a Determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column)

Property -7

If $\Delta=f(x)$ and $f(a)=0$ then $(x-a)$ is a factor of \triangle

Application of Determinants

Area of Triangle

Area of a triangle ABC , (say) whose vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is given by

Area of $(\triangle A B C)=$

$$
\begin{array}{r}
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)\right. \\
\left.+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{array}
$$

$=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$

Condition of collinearity of three points

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be three point then A, B, C are called collinear if

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

Equation of a line passing through the given two points

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}(\mathrm{x}, \mathrm{y})$ be any point on the line joining A and B.Then equation

$$
\left|\begin{array}{ccc}
x & y & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

Check Your Progress

1. $\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$ is equal to -
(A) $a^{2} b^{2} c^{2}$
(B) $2 a^{2} b^{2} c^{2}$
(C) $4 a^{2} b^{2} c^{2}$
(D) None of these
2. If $\left|\begin{array}{lll}3^{2}+k & 4^{2} & 3^{2}+3+k \\ 4^{2}+k & 5^{2} & 4^{2}+4+k \\ 5^{2}+k & 6^{2} & 5^{2}+5+k\end{array}\right|=0$, then the value of k is -
(A) 2
(B) 1
(C) -1
(D) 0
3. If $\left|\begin{array}{ccc}a+1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right|=4$, then the value a is -
(A) 1
(B) -1
(C) -2
(D) 0
4. The value of $\left|\begin{array}{cc}5+\mathrm{i} & -3 \mathrm{i} \\ 4 \mathrm{i} & 5-\mathrm{i}\end{array}\right|$ is -
(A) 12
(B) 17
(C) 14
(D) 24
5. $\left|\begin{array}{ccc}\sec x & \sin x & \tan x \\ 0 & 1 & 0 \\ \tan x & \cot x & \sec x\end{array}\right|$ is equal to -
(A) 0
(B) -1
(C) 1
(D) None of these
6. The cofactors of $1,-2,-3$ and 4 in $\left|\begin{array}{cc}1 & -2 \\ -3 & 4\end{array}\right|$ are-
(A) $4,3,2,1$
(B) $-4,3,2,-1$
(C) $4,-3,-2,1$
(D) $-4,-3,-2,-1$
7. The minors of the elements of the first row in the determinant $\left|\begin{array}{ccc}2 & -1 & 4 \\ 4 & 2 & -3 \\ 1 & 1 & 2\end{array}\right|$ are-
(A) 2, 7, 11
(B) $7,11,2$
(C) 11, 2, 7
(D) 7, 2, 11
8. The value of the determinant $\left|\begin{array}{lll}1 / \mathrm{a} & 1 & \mathrm{bc} \\ 1 / \mathrm{b} & 1 & \mathrm{ca} \\ 1 / \mathrm{c} & 1 & \mathrm{ab}\end{array}\right|$ is equal to
(A) abc
(B) $1 / a b c$
(C) 0
(D) None of these
9. If $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$, then value of x are-
(A) $0, \mathrm{a}$
(B) $0,-\mathrm{a}$
(C) $a,-\mathrm{a}$
(D) $0,3 \mathrm{a}$
10. $\left|\begin{array}{ll}7579 & 7589 \\ 7581 & 7591\end{array}\right|=$
(A) 20
(B) -2
(C) -20
(D) 4

Stretch Yourself

1. Find

$$
\left|\begin{array}{ccc}
\frac{a^{2}+b^{2}}{c} & c & c \\
a & \frac{b^{2}+c^{2}}{a} & a \\
b & b & \frac{c^{2}+a^{2}}{b}
\end{array}\right|
$$

2. If $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=\lambda\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

Than Find the value of λ
3. If $\triangle=\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{lll}y & b & q \\ x & a & p \\ z & c & r\end{array}\right|$. Show that Δ_{1} is equal to Δ_{2}
4. If $a x+b y+c z=1, b x+c y+a z=0=c x$
$+a y+b z$, Find the value of $\left|\begin{array}{lll}x & y & z \\ z & x & y \\ y & z & x\end{array}\right|$

$$
\left|\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{c} & \mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{c} & \mathrm{a}
\end{array}\right|
$$

5. Calculate the value of
$\left|\begin{array}{lll}441 & 442 & 443 \\ 445 & 446 & 447 \\ 449 & 450 & 451\end{array}\right|$

Hint Check Your Progress

$1 \mathrm{C} 2 \mathrm{~B} \quad 3 \mathrm{D} \quad 4 \mathrm{C} \quad 5 \mathrm{C}$
$6 \mathrm{~A} 7 \mathrm{~B} \quad 8 \mathrm{C} 9 \mathrm{D} \quad 10 \mathrm{C}$

