Senior Secondary Course Learner's Guide, Mathematics (311)

An expression expressed in equal number of rows and column and put between two vertical lines is named as determinant of that expression

DETERMINANT OF ORDER 2

$$a_{1}x+b_{1}y = c_{1}$$

$$a_{2}x+b_{2}y = c_{2}$$

$$x = \frac{b_{2}c_{1} - b_{1}c_{2}}{a_{1}b_{2} - a_{2}b_{1}}$$

$$y = \frac{a_{1}c_{2} - a_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}$$

$$\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} = a_{1} b_{2} - a_{2} b_{1}$$

The number $a_1 b_2 - a_2 b_1$ determines whether the values of x and y exist or not.

DETERMINANT OF ORDER 3

$$\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = \\ a_{1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - b_{1} \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \begin{vmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix} \\ = a_{1}(b_{2}c_{3} - b_{3}c_{2}) - b_{1}(a_{2}c_{3} - a_{3}c_{2}) + c_{1}(a_{2}b_{3} - a_{3}b_{2})$$

Minor

The Determinant that is left by cancelling the row and column intersecting at a particular element is called the minor of that element.

If
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 then Minor of a_{11}

is

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, \text{ Similarly}$$
$$M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

Using this concept the value of Determinant can be

 $\triangle = a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$

Cofactor

The cofactor of an element a_{ij} is denoted by F_{ij} and is equal to $(-1)^{i+j}$ M_{ij} where M is a minor of element a_{ij}

if
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

then $F_{11} = (-1)^{1+1} M_{11} = M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$
 $F_{12} = (-1)^{1+2} M_{12} =$

1

Mathematics (311)

$$-\mathbf{M}_{12} = - \begin{vmatrix} \mathbf{a}_{21} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{33} \end{vmatrix}$$

Property of Determinant

Property -1

The value of Determinant remains unchanged, if the rows and the column are interchanged. This is always denoted by ' and is also called transpose

Property -2

If any two rows (or columns) of a determinant be interchanged, the determinant is unaltered in numerical Value, but is changed in sign only,

Property -3

If a Determinant has two rows (or columns) identical, then its value is zero.

Property -4

If all the elements of any row (or column) be multiplied by the same number, then the value of Determinant is multiplied by that number.

Property -5

If each element of any row (or column) can be expressed as a sum of two terms, then the determinant can be expressed as the sum of the Determinants

Property -6

The value of a Determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column)

Property -7

If $\Delta = f(x)$ and f(a) = 0 then (x-a) is a factor of Δ

Application of Determinants

Area of Triangle

Area of a triangle ABC, (say) whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by

Area of
$$(\triangle ABC) =$$

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$=\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Condition of collinearity of three points

Let $A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$ be three point then A ,B,C are called collinear if

$$\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Equation of a line passing through the given two points

Let $A(x_1,y_1)$, $B(x_2,y_2)$ and C(x,y) be any point on the line joining A and B. Then equation

$$\begin{vmatrix} x & y & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Senior Secondary Course Learner's Guide, Mathematics (311)

Check Your Progress 1. $\begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$ is equal to -(A) $a^2b^2c^2$ (B) $2a^2b^2c^2$ (C) $4a^2b^2c^2$ (D) None of these 2. If $\begin{vmatrix} 3^2 + k & 4^2 & 3^2 + 3 + k \\ 4^2 + k & 5^2 & 4^2 + 4 + k \\ 5^2 + k & 6^2 & 5^2 + 5 + k \end{vmatrix} = 0$, then the value of k is -(A) 2 (B) 1 (C) -1 (D) 0 a+1 1 1 3. If $\begin{vmatrix} 1 & 1 & -1 \end{vmatrix} = 4$, then the value a -1 1 1 is -(A) 1 (B) -1 (C) -2 (D) 0 4. The value of $\begin{vmatrix} 5+i & -3i \\ 4i & 5-i \end{vmatrix}$ is -(A) 12 **(B)** 17 (C) 14 (D) 24 sec x sin x tan x 0 1 0 is equal to -5. tan x cot x sec x (A) 0 (B) - 1(D) None of these (C) 1

6. The cofactors of 1, -2, -3 and 4 in $\begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix}$ are-(A) 4, 3, 2, 1 (B) -4, 3, 2, -1 (C) 4, -3, -2, 1 (D) -4, -3, -2, -1 7. The minors of the elements of the first row in the determinant $\begin{vmatrix} 2 & -1 & 4 \end{vmatrix}$ 4 2 -3 are-1 1 2 (A) 2, 7, 11 (B) 7, 11, 2 (C) 11, 2, 7 (D) 7, 2, 11 8. The value of the determinant 1/a 1 bc 1/b 1 ca is equal to 1/c 1 ab (A) abc (B) 1/abc(C) 0 (D) None of these $\begin{vmatrix} a+x & a-x & a-x \end{vmatrix}$ 9. If $\begin{vmatrix} a-x & a+x & a-x \end{vmatrix} = 0$, then value $\begin{vmatrix} a-x & a-x & a+x \end{vmatrix}$ of x are-(A) 0, a (B) 0, -a(C) a, -a (D) 0, 3a $10. \begin{vmatrix} 7579 & 7589 \\ 7581 & 7591 \end{vmatrix} =$ (A) 20 (B) -2(C) - 20 (D) 4

3

Senior Secondary Course Learner's Guide, Mathematics (311)

Stretch Yourself

1. Find

H

1

$$\begin{vmatrix} \frac{a^{2} + b^{2}}{c} & c & c \\ a & \frac{b^{2} + c^{2}}{a} & a \\ b & b & \frac{c^{2} + a^{2}}{b} \end{vmatrix}$$
2. If $\begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix} = \lambda \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$
Than Find the value of λ
3. If $\Delta = \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix}$ and $\Delta_{2} = \begin{vmatrix} y & b & q \\ x & a & p \\ z & c & r \end{vmatrix}$.
Show that Δ_{1} is equal to Δ_{2}
4. If $ax + by + cz = 1$, $bx + cy + az = 0 = cx$
 $+ ay + bz$, Find the value of $\begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix}$

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
5. Calculate the value of $\begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix}$
Hint Check Your Progress
1 C 2 B 3D 4 C 5 C
6 A 7 B 8 C 9 D 10 C

Mathematics (311)